National Institute of Standards and Technology
Technology Administration

The OXCSwitch in GMPLS
Lightwave Agile Switching
Simulator (GLASS)

Version: Draft 1.0

Borchert ¢« Rouil — Draft 1.0

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

TABLE OF CONTENTS

L INTRODUCT ION e e et e e e e e e e e e e e e e e e e e 1
2 G AP A B LTI ES .. e ettt e e e e e 2
2.1 THE SWITCHING TABLE .« e ettt ettt et e e e e e e e e ettt e e e e e e e e e e e e e e e aeaeaanns 3
2.2 (000] NNV = = 1 = = S TR 3
2.3 (000] N7y 1 = V- 1 [0 PR 4
2.4 AADD DROP CA PABILITY ettt ettt e et e e e e e e et e e e e e e e eananans 4
S CONFIGURATION ettt et e e e e e e eeaeeaaee 5
4 IMPLEMENT AT ION L.t e e e e e e e e e 3]
41 UM L DIAGRAM e e e e e e e e e e e e e e e e 6
4.2 HOW TO USE THE OX COWITCH .. ene ettt e e e e e e 4
4.2.1 Froman algorithm............oo e 7
S T N O |1 \Y/< 1 (= (TP 7
A4.2.1.2 CONCAENBLION ..ot e e 7
A.2.01.3 CONNEBAION ...t 8
4.2.2 From @ ProtOCOLueeiiieiei ettt et b e e 9
4221 AdA/Drop iNfOrMEIION.coouuiiiieiiiiii e e e e e eennaanes 9
4.2.2.2 AdA/Drop CONFIQUIBLIONuuieiiieiiiiie et e e 10
4.2.2.3 SendiNg/RECEVING MESSATES.ccevruuuuieeietiiiiaaaa e e eeeati e e e eerti e e e e eeeeennenns 12

D CONCLUSION .. ettt e e 13
B AININ X e e e 13

Borchert « Rouil — Draft 1.0 i

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce I ntrOd LHI on

1 INTRODUCTION

This document presents the optical switch that is provided in the GLASS Framework. The
OXCSwitch isan SSFNet protocol session but in GLASSthe switch belongsto the host in lieu of the
protocols. The OXCSwitch configuration changes the behavior of the whole Optical Cross Conned
(OXC). That isthe reason why it is important to know the dfeds of changing some of its attributes in
the cnfiguration.

The next sedion provides information about the global cegpabilities of the OXCSwitch. Thenwego in
the oonfiguration followed by the implementation and how to use the OXCSwitch with a new
protocol.

It is recommended to look into the @ding of the classes mentioned in this document for
implementation details. A list of the classes is attached to the Annex.

Borchert ¢« Rouil — Draft 1.0 1

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce Capab| | |t| es

2 CAPABILITIES

The default implementation of the optical switch is available in the padage gov.nist.antd.optical
and implemented in the classOXCSwitch. This classprovides a anfigurable switch that includes the
main feaures of areal opticd switch.

Figure 1 displays the position of the optical switch in the design of a GLASSOXC node.

DropPort AddPort

4

OXCSwitch

-
]
]

[
]

ONIC

)
=
0O

-I-lllllllllllllllllllllll

iber Fiber

=5
ﬁ

ko Ao

Signalin Data

|

Figure 1: The OXCSwitch

The OXCSwitch is locaed on top on the optical network interface cads (ONIC) and below the other
protocols like IP (if the implementation of |P knows the optical framework).

The switch is used to conred input lambdas to output lambdas for direct O/O/O" switching or to
upper layers for O/E/O? switching or just as Add/Drop capability. To do this, the switch contains a
switching table that can be dynamically updeted before and during the simulation by a standardized
interface

! optical input, optical switching, optical output
2 optical inpu, eledronical switching, optical output

Borchert « Rouil — Draft 1.0 2

NS

National Institute of S ds and Technology
Technology Administration, U.S. Department of Commerce Capab| | |t| es

In the GLASS framework, the switch opens the ONICs below it to receive the padkets from the
network.

The switch is the last opticd layer. When a message is received by a ONIC and is forwarded to
another ONIC without going to some upper layer (O/O/O switching), it stays in the optical domain. If
the switch pushes up to another protocol then thereis a mnversion from optical to eledronic.

2.1 THE SWITCHING TABLE

The switching table conneds two lambdas. In fact, these lambdas can be either physicd lambdas
(locaed in the fiber of alink), or logical lambdas (for add/drop capabilities).

The airrent version does not provide any multiplexing in the switching table. This means it is a one
to one relation. The multiplexing can be done on the layers on top of the OXCSwitch. The
manipulation of the switching table is possible only indiredly and has to be done through the
OXCSwitch that provides mechanisms to ensure the integrity of the table.

2.2 CONVERTERS

The behavior of the switch, or the posshilities of the switch is on one hand due to the cnverters. The
converter attribute specifies the number of available wnverters and therefore indicaes the caability
of lambda switching.

The lambda @nversion allows the switch to change the wavelength while switching. For example an
inpu lambda of 1550m can be @mnneded to an output lambda of 15516nm. When the @mnned
method is cdled in the switch, then it looks if the values are correct. For example, if the switch does
not provide lambda mnversion (becaise there was not converters or because they are all used), then
trying to redizethe switching given before, will produce an exception.

Borchert ¢« Rouil — Draft 1.0 3

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce Capab| | |t| es

2.3 CONCATENATION

The mncaenation of the OXCSwitch isthe caability to treat a set of input lambda a same way also
called waveband switching. The aurrent implementation allows three onfigurations:

* No concaenation: If the switch is in the @mnfiguration mode then no waveband switching is

possible.

» Standard concaenation: The wavelengths that compose awaveband must be wntiguous.

» Virtual concatenation: The wavelengths neal not to be contiguous.
Currently this is only a charaaeristic of the switch but no chedking has been implemented to control
its behavior depending on the wnfiguration.

2.4 ADD DROP CAPABILITY

The OXCSwitch does not only provide O/O/O switching. It is also possible to transmit information
coming from an optical link to protocols. In this case, the switch needs to convert the signal to
eledronic. In general, using the so-called “add-drop-lambdas’ does the cmmmunication between the
protocols and the switch. Chapter 2.4 gives more explanation on how to use them. These ald/Drop
lambdas (ADL) are mapped one by one with a physicd lambda. An ADL can be conneded to an
inpu or to an output lambda. The implementation of an ADL isin the classAddDropL ambda

Borchert ¢« Rouil — Draft 1.0 4

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Configuration

3 CONFIGURATION

This ®dion contains the DML schema of the OXCSwitch and explains how to configure it.

ProtocolSession [Optional attribute noConverters indicates
name oxcwitch the number of converters included in
use gov.nist.antd.optical. OXCSwitch switch (default value = infinite).
noConverters %l
concatenation %S Optional attribute concatenation defines
noAddDrop %l the type of concatenation available for

] waveband switching. Three types are

defined: none, standard (lambdas must be
contiguous), virtual (lambdas don’t
necessary need to be contiguous).

Optional attribute noAddDrop specifies the
number of AddDropPort in the switch. These
ports are used to connect other protocols

on top of the OXCSwitch (default value:

max between the inLambdas and outLambdas).

Table 1: The OXCSwitch Configuration Schema

If the user does not enter specification to the OXCSwitch, then the result is:
* Unlimited converters so that there is no regtriction for the wavelength algorithms.
* No concaenation which means that there is no waveband switching.
* A number of add/drop lambda equals to the number of physical lambdas to alow all possible
combinations to switch lambdas.

Borchert ¢« Rouil — Draft 1.0 5

NIST

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce I mpl ement&l on

4 |IMPLEMENTATION

This ®dion introduces the realer to the design of the class gov.nist.antd.optical. OXCSwitch and
the related classes.

4.1 UML DIAGRAM

ProtocolSession
(S5F.05)
i

OXCSwitch SwitchingTable

{gov.nistantd.optical) {gov.nistantd.optical)
-concatType ©int= OXCSwitch NO_CONCATENATION +connect! inLambda : Lambdalnterface, outLambda - Lambdalnterface) void
-debug : boolean = false +disconnect{ inLambda : Lambdalnterface, outLambda : Lambdalnterface) : void
-hostlD int=-1 +getConnectionsinfod :int][
-interfaceCount : int=10 _oxcSwitch -switchingTable |*g8tinlambdal outLambda : Lambdalnterface) | Lambdalntarface
HINTERFACE _SET _STARTING _SIFE - int= +getinLambdas(: Enumeration
-noConverters - int= Integer MAX_VALUE 1 1 +getOutlambdal inLambda : Lambdalnterface) - Lambdalnterface
-noUsedAddLambdas @ int=0 +getOutlambdas() : Enumeration
-nolsedConverters ;int=10 +getOxcSwitch(;| OXCSwitch
-noUsedDropLambdas @ int=0 +printinfas(: void
HENO_COMCATERNATION - int=0 +setOxcBwitch(oxcBwitch - OXCBwitch) waid
+EDSESSION_NAME | Siring = "gxeowich” +SwitchingTahle(oxcSwitch © OXCSwitch)

=
+EMETUAL CONCATENATION jnt=

+configd cfg : Configuration) : void
+connect] inLambda : Lambda, outLambda : Lambda) void

+connect inFiber: Fiber, outFiber : Fiber) : void -inTable nutTable
+eonnectAddPort{ addDropLambdalD : int, oniclD ; int, fiberlD : int, lambdalD :int) : void

+eonnectDropPort; addDropLambdalD : int, oniclD : int, fikerD :int, lambdalD : int) : void

+createMewAddDropLambdad | int -addDranamhdas‘J: [
-decUsedCanverters(@ woid *‘ (Java.util)
+deleteAddDropLambdal id : int) : boolean

+disconnect; fiber : Fiber) : void
+disconnect] lambda : Lambda) 2 void
+disconnectiddPort{ addDropLambdalD :int) woid
+disconnectDropPortl addDropLambdalD @ int) : void
#drop{ message : String) : void
+getaddDroplDs) @ int]
+getAddDropLambralic - int) - AddDroplambda e race el
+getAttached ONIC{ oniclD Cint) : ONIC 0
+getAttachedOnicFromIP{ oniclP : int) : ONIC

+getattachedONICS) - ONIC]

+getConcatTypel : int

+getConnectionsinfol) ©int[[

-getHostD ;int

+getMoCanvertersd @ int

+gethaOrICs) :int

+gethotUsedAddLambdas) : Vector

+getMoiUsedDropLambdas(: Vector

+getMolsedAddLambdas) : int

+gethlalUsedCarverters() © int

+getholsedDropLambdas(: int

+getUsedAddIDs () :int]

+getUsedAddLambdas) Yector

+getUsedDroplDsd int]

+getUsedOraplambdas] : Vector

-incUsedConverters() :void

+initQ : woid

+isConnected(lambda : Lambda) - hoalean

+isCorwerter() - boolean

+isConverterAvailable() : boolean

+isDebugd : boolean

+opened(anic : ProtocalSession) @ void

+OXCEwitch()

+push{ message ProtocolMessage, fromSession : ProtocolSession) hoolean
-pushDown(message ProtocolMessage, fromSession : ProtocolSession) © hoolean
-pushFramONIC(ressage : ProtocolMessage, fromSession : Protocal3ession) boalean
+removeConversion(void

+removeONIC] anic : ONIC) @ void

+setConcatType(newType :int) :void

+setDebug(value : hoolean) : void

+setGraph{ graph : ProtocalGraph) : void

+to DML - String

+0&tring(String

Figure 2: UML diagram of OXCSwitch

Borchert ¢« Rouil — Draft 1.0 6

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

I mplementation

4.2 How TO USE THE OXCSWITCH

4.2.1 FROM AN ALGORITHM

The routing and wavelength algorithms may be interested in some charaderistics of the switch to
compute the route or path. This paragraph shows how to get the information.

42.1.1 CONVERTERS

To get the information about converter, 2 methods must be used:

* public boolean isConverter(): Returns true is the switch contains converters.

* public boolean isConverterAvailable(): Returnstrue if there is at least one onverter available.
The maintenance of the number of converters is done aitomatically by the OXCSwitch every time
the method connect () or disconnect () is called. This information is very important for a wavelength
algorithm to deade if this node @an be used or not. The switch will rejed any connedion between

two lambdas with different wavelength if there is no converter avail able.

4.2.1.2 CONCATENATION

The OXCSwitch classcontains sme static constant to identify the concaenation type:
* NO_CONCATENATION
« STANDARD_CONCATENATION
* VIRTUAL_CONCATENATION
Chapter 2.3 explains for the signification of these values in detail.
To accessthe cncaenation-status of the switch, the following method is available:
* publicint getConcatType() : Returns the value of the concaenation type.
This concaenation type is st during the @nfiguration. It is also possible to modify the value even
during the simulation by using the crresponding setter method.

Borchert ¢« Rouil — Draft 1.0 7

NS

National Institute of S ds and Technology
Technology Administration, U.S. Department of Commerce I mpl ement&l on

4.2.1.3 CONNECTION

A wavelength algorithm may want to connect two single lambdas or two complete fibers. For this
purpose, the OXCSwitch provides 2 methods:

* public void connect(Lambda inLambda, Lambda outLambda):Conneds the 2 given lambdas.
An exception may occur for different ressons. For example, if alambda is already connected.
It happens also if the lambdas have diff erent wavelength and the switch has no more wnverter
available.

» public void connect(Fiber inFiber, Fiber outFiber) : This method conneds all the lambdas
of the input fiber to the lambdas of the output fiber. This method provides only a basic
checking mechanism. The fibers must have the same number of lambdas and the switch tries
to conred the lambda without any optimization. It tries to conrect the first lambda of the
inpu fiber to the first lambda of the output fiber and so on.

It may be possible that the implementation of an algorithm needs more information that is explained
in the following Chapter. Also a protocol may want to conned two lambdas. The way to access
information is the same for an algorithm or a protocol.

Borchert ¢« Rouil — Draft 1.0 8

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce I mpl ement&l on

4.2.2 FROM A PROTOCOL

When a protocol wants to use the switch to transmit data or to manipulate the @nfiguration, it needs

to request the status of the switch first, to prevent any kind of exception or conflict.

4.2.2.1 ADD/DROP INFORMATION

The add/drop information must be used when a protocol needsto send data using the opticd switch.

The following methods can be used to determine the availability of the resources:

public int getNoUsedAddLambdas(): Returns the number of virtual lambdas at the ald port.
public int getNoUsedDropLambdas(): Returns the number of virtual lambdas at the drop port.
public Vector getNotUsedAddLambdas(): Returns a vedor that contains the virtual lambdas
available & the ald port. If one is available, then a protocol can use it to send information to
the network through a physical lambda.

public Vector getNotUsedDropLambdas():Returns a vedor that contains the virtual lambdas
available at the drop pat. If oneis available, a protocol can use it to receve information from
the network through a physical lambda.

public int[] getUsedAddIDs(): Returns an array that contains the id of the virtual lambdas
used at the ald port.

public int[] getUsedDroplDs(): Returns an array that contains the id of the virtual lambdas
used at the drop port.

public Vector getUsedAddLambdas(): Returns a Vedor that contains the virtual lambdas
used at the ald port.

public Vector getUsedDropLambdas(): Returns a Vedor that contains the virtua lambdas
used at the drop port.

Borchert ¢« Rouil — Draft 1.0 9

NS

National Institute of S ds and Technology
Technology Administration, U.S. Department of Commerce I mpl ement&l on

Once aprotocol sees that there ae resources available, it can conned the ADL to the physical
lambdas using the following methods:

* public void connectAddPort (int addDropLambdal D, int oniclD, int fiberI D, int lambdal D)
This method conneds the virtual lambda addDropLambdal D of the ald port with the lambda
identified by the oniclD, fiberID and lambdalD. If the cnnedion is done, a protocol will be
able to send data to the network. Otherwise an InvalidConnectionException is thrown if the
switch finds an error.

* public void connectDropPort (int addDropLambdal D, int oniclD, int fiberID, int lambdal D)
This method conneds the virtual lambda addDropLambdal D of the drop port with the lambda
identified by the oniclD, fiberID and lambdalD. If the connedion is done, a protocol will be
able to send data to the network. Otherwise an InvalidConnectionException is thrown if the
switch finds an error.

There is opposite methods to dsconned an add pat and adrop port given the port number.

4.2.2.2 ADD/DROP CONFIGURATION

This paragraph explains two ather important fegures that help a protocol user to configure the
add/drop ports. Some protocols, like signaling protocols, must be @nnected to add/drop ports in
order to recave and send information.

The abstract class gov.nist.antd.merlin.AbstractAddDropConfigurator provides the class that
extends it the possibility to configure eah add/drop port out of the DML.
The format is as follow:

addLanbda [Defi nes a connection of a lanbda to an
Id $I1! add port.
onicld $I1!
fiberlD $I 1!
| anbdal D $I 1!

]

dr opLanbda [Defines a connection of a lanbda to a
Id $l1! drop port.
onicld $I1!
fiberlD $I 1!
| anbdal D $I 1!

]

Table2: The Add/Drop Lambda Configuration

Borchert ¢« Rouil — Draft 1.0 10

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

I mplementation

When creding an add-lambda, the protocol will crege a onnedion between the port and the lambda,
and store the information of this add-port used to send data. Later on, the protocol can accessthis port
without the need of manipulating the OXCSwitch. The same mechanism is used for the drop-port.
Cheding mecdhanisms are also included and report exceptions if the lambda is unknown or if there
are not enough ports avail able.

Another feaure provides the user with a default connedion setup of the ald/drop ports without
having to specify the wnfiguration in the DML. The implementation is available in the class
gov.nist.antd.merlin.util.AutoCtrlConfig.

This abstrad class looks into ead fiber connected to the OXCSwitch and conneds the control
lambdas. All control lambdas of output fibers are wnnected to add-ports (chedks if there ae enough
ports available) and control-lambdas for input fibers are mwnneded to drop-ports. For bidiredional
fibers, the protocol will conned the control lambdas in both diredions by alternations.

To use these caabilities, the protocol must extend one of these classes. The dass AutoCtrlConfig
extends the AbstraaAddDropConfigurator and uses the same mechanisms to store the information
about the add/drop port.

ProtocofSession
(S5F.05)

|

AbstractAddDropConfigurator
[gov.nistantd. merlin. util

|

AuntoConfrgClr
(o nist. antd . mmerlin.utily

Figure 2: AbstractAddDropConfigurator and AutoconfigCtrl

The main objedive of these classes is to provide aprotocol designer with an example on how to
crede a protocol that conrects itself to the OXCSwitch for sending'receiving ditas The next

Borchert ¢« Rouil — Draft 1.0 11

NIST

National Institute of S

dAerrdd

ds and Technol

97
Technology Administration, U.S. Department of Commerce I mpl ement&l on

paragraph shows how the protocol, which is conneded to the switch via an add/drop port, will send

and receive messages.

4.2.2.3 SENDING/RECEIVING MESSAGES

For sending messages, the OXCSwitch uses the standard method of all ProtocolSesson:

public boolean push(Protocol Message message, Protocol Session fromSession)

The protocol that neels to send messages is required to cdl this method to transmit data to the

network. As the OXCSwitch is in the optical domain, the message type must be of
OpticalFrameHealer.

The optical frame header (gov.nist.antd.optical.OpticalFrameHeader) is used for two reasons:

To identify alambda when a message is sent through an optical link.

In SSNet, a link represents only one able so there is no problem to see where amessage
comes from. It is more complicaed for an optical link that may contain multiple fibers and
lambdas. That’s why we use this header that contains an id for the fiber and the lambda.

To identify which add-drop-port has to be used for sending or receiving a message.

When a protocol wants to send a message, it has to create an instance of OpticalFrameHeader
and specify the add-port to use in the field LambdalD of this header (the atribute fiberID
must not be used). Then the switch looks into this header to find the @rresponding lambda it
has to send the message to. On the other diredion, the switch knows (out of the header) from
which physicd lambda the message ame from and updites the fields of the header. It
replaces the LambdalD by the drop-port ID and set the atribute FiberID to “—1". Then it
sends it to the protocol that is attadhed to this drop-port. The protocol, that received this
message is able by cheding at the healer, to recognize from which port the message
originally came from and processsiit.

Borchert ¢« Rouil — Draft 1.0 12

NS

National Institute of S ds and Technology
Technology Administration, U.S. Department of Commerce

Conclusion

5 CONCLUSION

As explained in this document, smulation results may vary a lot, depending on the @nfiguration of
the switch. The modification of the converters and the ald-drop-ports can influence the results of the
algorithms. Even so some @nnedions may fail if there ae not enough resources free that are
specified in the OXCSwitch.

The OXCSwitch is still under development and some improvements are under study. For example,
the multiplexing/demultiplexing in the lambdas and switching delays.

6 ANNEX

This chapter contains the list of the classname mentioned in this document.
gov.nist.antd.optical. OXCSwitch

gov.nist.antd.optical. AddDropLambda
gov.nist.antd.optical.OpticaLink
gov.nist.antd.optical. Fiber
gov.nist.antd.optical.Lambda

gov.nist.antd.optical.| nvalidConnectionException
gov.nist.antd.optical.Optica FrameHeader
gov.nist.antd.optical. ONIC

gov.nist.antd.merlin.util. Abstraa AddDropConfigurator
gov.nist.antd.merlin.util. AutoConfigCirl
SF.0OS.ProtocolSesson

SS.0S.ProtocolMessage

SS.Net.NIC

SS.Net._NIC

Borchert ¢« Rouil — Draft 1.0 13

